Analisa Tegangan Panas Housing Batang Kendali Reaktor Nuklir Dalam Batas Desain SA403X
Abstract
Inti Sari
Batang kendali reaktor Nuklir adalah satu komponen yang digunakan untuk mengendalikan populasi netron yang beredar dalam teras reaktor nuklir. Untuk memenuhi desain PLTN tipe PWR perlu dibuat sebuah prototype housing batang kendali. Oleh karena itu dalam rangka pembuatan prototype housing batang kendali di perlukan sebuah pradesain yaitu berupa pemodelan integritas housing batang kendali dengan mmenggunakan metode element hingga. Simulasi perpindahan panas dan mekanik pada housing batang kendali reaktor nuklir tipe PWR telah dilakukan menggunakan metode elemen hingga dengan bantuan perangkat lunak Ansys. Simulasi ini dilakukan untuk mengetahui distribusi temperatur selama operasi dan distribusi tegangan vonmisses pada kondisi tegangan panas yang terjadi pada housing batang kendali reaktor dengan tujuan untuk mengetahui integritas strukturnya. Simulasi dilakukan dengan kondisi temperatur operasi 280 ºC dan tekanan 15 MPa dan adanya faktor konveksi pada temperatur 60 ºC serta pada kondisi unsteady state. Dalam simulasi di dapatkan hasil bahwa distribusi temperatur pada housing batang kendali berada pada range 170 ºC – 280 ºC dengan distribusi tegangan Vonmises pada tegangan panas paling rendah adalah 2 MPa dan tegangan Vonmises pada tegangan panas tertinggi sebesar 217 MPa. Dengan menggunakan teori kegagalan tegangan luluh dan distorsi energi maka tegangan panas (dalan vonmises) yang ada pada housing batang kendali masih dalam batas aman karena tegangan yang terjadi masih di bawah tegangan luluh dari bahan SA403X.
Abstract
Control rod nuclear reactor is one of part for control of netron population in core reactor. To fulfill the requirement PWR type nuclear power plant design, it is necessary to make a prototype control rod housing. Therefore, in order to manufacture a control rod housing prototype, a pre-design is needed, namely modeling the integrity of the control rod housing using the finite element method. Simulation of heat transfer and mechanics on the control rod housing of the PWR type nuclear reactor has been carried out using the finite element method with the help of Ansys software. This simulation was carried out to determine the temperature distribution during operation and the distribution of the Vonmisses stress in thermal stress condition that occurred in the reactor control rod housing in order to determine the structural integrity. Simulations
were carried out with operating temperature conditions of 280 ºC and pressure of 15 MPa and the presence of a convection factor at a temperature of 60 C and in unsteady state conditions. In the simulation, it is found that the temperature distribution in the control rod housing is in the range of 170 ºC – 280 ºC with the lowest Vonmises stress in thermal stress condition distribution is 2 MPa and the highest Vonmises stress is 217 MPa. By using the failure theory of yield stress and energy distortion, the stress on the control rod housing is still within safe limits because the stress that occurs is still below the yield stress of the SA403X material.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
ASME Section III, Rules For Construction of Nuclear Facility Components. USA, 2017.
J. S. Kim, J. B. Choi, Y. J. Kim, and Y. W. Park, “Investigation on constraint effect of reactor pressure vessel under pressurized thermal shock,” Nucl. Eng. Des., vol. 219, no. 3, pp. 197–206, 2002, doi: 10.1016/S0029-5493(02)00282-0.
S. Rahmat A., Abdul F, “Pemodelan Balst Furnace dengan Menggunakan Reduktor Arang Sawit,” 2015.
“The Reactor Coolant System and Related Systems,” in Fundamental Safety Overview Vol.2 Design and Safety, United Kingdom.
S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS. Prentice Hall, 2003.
Ansys inc. : Documentation and Theory Of Finite Element Methode. USA, 2019.
International Atomic Energy Agency (IAEA), “Components Important to Safety : PWR Pressure Vessels,” Assess. Manag. Ageing Major Nucl. Power Plant Components Important to Saf. PWR Press. Vessel., no. June, p. 35, 2007.
A. Prihantoro and E. Afrizal, “Proceeding of Ocean, Mechanical and Aerospace-Science and Engineering-Analysis of Weld Strength Through Finite Element Method Using Abaqus Program and Comparing with Experiment Testing,” vol. 5, no. 1, pp. 103–108, 2018, [Online]. Available: www.isomase.org.,.
A. Rahmat, A. Rahmat, B. B. Joint, W. Transition, and R. P. V Analysis, “Distribusi
Tegangan Pada Desain RPV,” pp. 502–510, 2010.
Stephen Timoshenko, Strenght of Material Problem and Aplication. USA: Van Nostrand, 2015.
M. Joun, I. Choi, J. Eom, and M. Lee, “Finite element analysis of tensile testing with emphasis on necking,” Comput. Mater. Sci., vol. 41, no. 1, pp. 63–69, 2007, doi: 10.1016/j.commatsci.2007.03.002.
Padhil, Ahmad, and Hari Purnomo. "Macroergonomic approaches as a solution to local wisdom-based tourist village development planning." MATEC Web of Conferences. Vol. 154. EDP Sciences, 2018.
Refbacks
- There are currently no refbacks.