Analisis Performa Persentase Stripping dan Efisiensi Panas Stripper (DA-101) pada Unit Sintesa Urea PUSRI-II B

Enggal Nurisman, Merlinda Ariesty Putri, Mayang Bidari

Abstract

The Synthesis Section in the PUSRI II-B Urea Plant is the main section in the process of making urea fertilizer which will determine the components and quality of urea. The Synthesis Section has three main tools, namely reactor (DC-101), stripper (DA-101), and carbamate condenser (EA-101). The stripper (DA-101) plays a role in the process of separating excess ammonia from urea and decomposing unconverted carbamates from the urea synthesis solution. The separation process in the stripper is called stripping. Carbamate decomposition in the stripper can cause side reactions with the result of excess biuret due to unsuitable operating conditions. This caused in the need to control the operating conditions of the stripper so that the formation of biuret can be minimized. In this study, a stripper performance analysis (DA-101) was carried out from the comparison of design data and actual data in terms of the percentage of NH3 stripping, heat efficiency, and biuret content. The actual data in this study were taken in 5 weeks for 1 month at the end of 2021. From the results of the study, the percentage of NH3 stripping was 76.7329%, 77.1498%, 76.9525%, 76.2190% and 76.10231%. Meanwhile, the heat efficiency is 97.9500%, 93.69%, 95.1200%, 97.1500% and 97.3400%. And the levels of biuret formed are 0.0349 %wt, 0.0671 %wt, 0.0474 %wt, 0.0664 %wt, and 0.0469 %wt. The results of the stripper performance analysis (DA-101) show that the equipment unit is still functioning properly.

Keywords

Biuret; efisiensi; kinerja; stripper; urea

References

PT. Sriwidjaja, “Filosofi Proses Pabrik Ammonia Pusri – IIB Kapasitas Produksi 2000 MTPD,” 2017.

PT. Sriwidjaja, “KP PUSRI-IIB,” 2021. http:laporankp.rf.gd/index.html.

M. Septiani, D. Dhasvianty, M. Miftakhul, and R. Wati, “Pengaruh Temperatur Operasi Terhadap Penurunan Kadar Biuret Dalam Evaporator at PT Pupuk Kaltim ),” J. Chem. Process Eng., vol. 5, no. April, 2020.

M. Goulding, F. Z. Suncor, and M. K. Koch-glitsch, “Improved Stripper Efficiency Raises Upgrader Production,” pp. 1–7, 2016.

E. J. Kim, H. Kim, and E. Lee, “Influence of Ammonia Stripping Parameters on The Efficiency and Mass Transfer Rate of Ammonia Removal,” Appl. Sci., vol. 11, no. 1, pp. 1–13, 2021, doi: 10.3390/app11010441.

E. Megawati, Yuniarti, and A. Rifandi, “Evaluasi Kolom Stripper C-04-01 di Unit Naphta Hydrotreater (Studi Kasus di PT . Pertamina Refinery Unit V Balikpapan),” J. Chemurg., vol. 02, no. 2, pp. 20–24, 2018.

Y. J. Lin and G. T. Rochelle, “Optimization of Advanced Flash Stripper For CO2 Capture Using Piperazine,” Energy Procedia, vol. 63, pp. 1504–1513, 2014, doi: 10.1016/j.egypro.2014.11.160.

Shahab., and Sadputra.“Comparative Analysis Between Temperature and Pressure To the Water Content Lost in Stripper,” pp. 48–51, 2017.

C. L. Yaws, “Chemical Properties Handbook.” pp. 1–772, 1999.

F. dan Rousseau, Elementary Process of Chemical Engineering 3rd edition. 2005.

S. S. Warudkar, K. R. Cox, M. S. Wong, and G. J. Hirasaki, “Influence of Stripper Operating Parameters on The Performance of Amine Absorption Systems for Post-Combustion Carbon Capture: Part II. Vacuum Strippers,” Int. J. Greenh. Gas Control, vol. 16, pp. 351–360, 2013, doi: 10.1016/j.ijggc.2013.01.049.

L. Mahmoodi and P. Darvishi, “Mathematical Modeling and Optimization of Carbon Dioxide Stripping Tower In An Industrial Ammonia Plant,” Int. J. Greenh. Gas Control, vol. 58, pp. 42–51, 2017, doi: 10.1016/j.ijggc.2017.01.005.

N. I. F. Nisa, A. Altway, and S. S, “Simulasi Unit Stripping CO2 dalam Packed Column Skala Industri dengan Kondisi Non-Isothermal,” J. Rekayasa Kim. Lingkung., vol. 14, no. 1, pp. 53–62, 2019, doi: 10.23955/rkl.v14i1.13547.

Baboo, “Urea Stripper Tube Leakage,” Int. J. Eng. Res., vol. V7, no. 03, 2018, doi: 10.17577/ijertv7is030090.

T. N Wiyanto, P. R Amalia, and D. Haryanti “Analisis Efisiensi Panas Tunnel Kiln pada PT XYZ dengan Neraca Massa dan Energi,” J. konversi, vol. 6, no. 2, 2017.

T. H. Truong and V. V. Le, “A Mini Review on The Engine Deposits and Its Effect On Heat Transfer,” J. Mech. Eng. Res. Dev., vol. 42, no. 5, pp. 158–162, 2019, doi: 10.26480/jmerd.05.2019.158.162.

J. Xu, J. D. Zhao, Y. Jia, T. Li, S. B. Yang, and Z. H. Zhang, “Effect of Fouling Resistance In Heat Exchanger and The Crystal Form Of CaCO3 in Hard Circulating Cooling Water with Electrostatic Field and Alternating Current Electric Field,” Water Sci. Technol., vol. 84, no. 7, pp. 1608–1622, 2021, doi: 10.2166/wst.2021.344.

R. A. Faizah, “Analisis Keandalan dan Safety Integrated Level pada Stripper PV-3900 di Industri Pengolahan Minyak,” vol. 4, no. 1, pp. 1–6, 2018.

I. Mayesi, “Penentuan Kadar Biuret pada Pupuk Urea Prill di PT. Iskandar Muda,” Quim. J. Kim. Sains dan Terap., vol. 2, no. 2, pp. 23–26, 2020, doi: 10.33059/jq.v2i2.2641.

D. I. Muthawali, “Penetapan Kadar Biuret Dalam Pupuk Urea Prill Dengan Metode Spektrofotometri,” Saintek ITM, vol. 31, no. 2, 2019, doi: 10.37369/si.v31i2.38.Spektrofotometri,” Saintek ITM, vol. 31, no. 2, 2019, doi: 10.37369/si.v31i2.38.

Refbacks

  • There are currently no refbacks.